2.7 Limites no Infinitos de Funções reais de uma variável real

Agora, considere a situação onde a variável independente cresce, ou decresce, indefinidamente. Por exemplo, para a função $f(x) = \frac{2x^2}{x^2+1}$ o que acontece quando tomamos valores positivos de x cada vez maiores? Na verdade, o valor funcional de f torna-se cada vez mais próximo de 2. Logo, parece natural pensar podemos tomar o valor de f(x) tão próximo de 2 quanto desejarmos, para isso, basta tomar valores de x suficientemente grande.

Essa é a ideia que é usada para definir os chamados *Limites no Infinitos*. Uma informação importante é que quando a variável pode crescer indefinidamente através de valos positivos, nós escreveremos $x \to +\infty$. Analogamente, podemos definir o limite de uma função quando a variável decrescer indefinidamente escrevendo $x \to -\infty$. Vamos a definição formal.

Definição 2.7.1 Seja $f: X \subset \mathbb{R} \to \mathbb{R}$ uma função definida num intervalo $]a, +\infty[\subset X. O$ *Limite de* f(x) é L *quando* x *Cresce Indefinidamente*, e escrevemos

$$\lim_{x\to+\infty}f(x)=L,$$

se $\forall \epsilon > 0$ dado, $\exists N > 0$ tal que se x > N, então, $|f(x) - L| < \epsilon$.

Definição 2.7.2 Seja $f: X \subset \mathbb{R} \to \mathbb{R}$ uma função definida num intervalo $]-\infty, a[\subset X]$. O **Limite de** f(x) é L quando x **Decresce Indefinidamente**, e escrevemos

$$\lim_{x\to-\infty}f(x)=L,$$

se $\forall \epsilon > 0$ dado, $\exists N > 0$ tal que se x < -N, então, $|f(x) - L| < \epsilon$.

Usando a definição de limites no infinito, é possível demonstrar as propriedades a seguir. Elas serão deixadas como exercícios para aqueles que tiverem a curiosidade de praticar a definição de limites no infinito. Essas propriedades são de grande ajuda no cálculo de limites infinitos.

Teorema 2.7.1 *Seja r* \in \mathbb{N} *, Então:*

a)
$$\lim_{x \to +\infty} \frac{1}{x^r} = 0$$
; b) $\lim_{x \to -\infty} \frac{1}{x^r} = 0$.

Demonstração: Exercício.

Agora, vejamos alguns exemplos.

Exemplo 2.7.1 Calcule, se existir, $\lim_{x \to +\infty} \frac{4x-3}{2x+5}$

Solução: Observe que $f(x) = \frac{4x-3}{2x+5}$ é uma função racional onde tanto o polinômio do numerador quando do denominador tem grau um. Então, vamos colocar x em evidência nos dois termos da fração. Assim, usando as propriedades da fatoração e as propriedades de limites de funções, temos que:

$$\lim_{x \to +\infty} \frac{4x-3}{2x+5} = \lim_{x \to +\infty} \frac{x\left(4-\frac{3}{x}\right)}{x\left(2+\frac{5}{x}\right)} = \lim_{x \to +\infty} \frac{4-\frac{3}{x}}{2+\frac{5}{x}} = \frac{4-3\lim_{x \to +\infty} \frac{1}{x}}{2+5\lim_{x \to +\infty} \frac{1}{x}} = \frac{4-3.0}{2+5.0} = \frac{4}{2} = 2.$$

Exemplo 2.7.2 Calcule, se existir, $\lim_{x\to-\infty} \frac{2x^2-x+5}{4x^3-1}$.

Solução: Observe que $f(x) = \frac{2x^2 - x + 5}{4x^3 - 1}$ é uma função racional onde o polinômio do numerador tem grau dois e o do denominador tem grau três. Então, vamos colocar x^3 em evidência nos dois termos da fração. Assim, usando as propriedades de fatoração e aplicando as propriedades de limite de funções chegamos a:

$$\lim_{x \to -\infty} \frac{2x^2 - x + 5}{4x^3 - 1} = \lim_{x \to +\infty} \frac{x^3 \left(\frac{2}{x} - \frac{1}{x^2} + \frac{5}{x^3}\right)}{x^3 \left(4 - \frac{1}{x^3}\right)} = \lim_{x \to +\infty} \frac{\frac{2}{x} - \frac{1}{x^2} + \frac{5}{x^3}}{4 - \frac{1}{x^3}} = \frac{0 - 0 + 0}{4 - 0} = \frac{0}{4} = 0.$$

Exemplo 2.7.3 *Calcule, se existir,* $\lim_{x\to+\infty} \frac{3x+4}{\sqrt{2x^2-5}}$

Solução: Considere $g(x) = 3x + 4 = x\left(3 + \frac{4}{x}\right)$ e $h(x) = 2x^2 - 5 = x^2\left(2 - \frac{5}{x^2}\right)$. Dessa forma, como $x \to +\infty$, segue que x > 0 e, consequentemente, $x = |x| = \sqrt{x^2}$. Assim, considerando $f(x) = \frac{g(x)}{\sqrt{h(x)}}$, chegamos a:

$$\lim_{x \to +\infty} \frac{3x+4}{\sqrt{2x^2-5}} = \lim_{x \to +\infty} \frac{x\left(3+\frac{4}{x}\right)}{\sqrt{x^2}\sqrt{2-\frac{5}{x^2}}} = \lim_{x \to +\infty} \frac{3+\frac{4}{x}}{\sqrt{2-\frac{5}{x^2}}} = \frac{3+0}{\sqrt{2-0}} = \frac{3}{\sqrt{2}}.$$

Exemplo 2.7.4 Calcule, se existir, $\lim_{x\to-\infty} \frac{3x+4}{\sqrt{2x^2-5}}$

Solução: Considere $g(x) = 3x + 4 = x\left(3 + \frac{4}{x}\right)$ e $h(x) = 2x^2 - 5 = x^2\left(2 - \frac{5}{x^2}\right)$. Dessa forma, como $x \to -\infty$, segue que x < 0 e, consequentemente, $x = -|x| = -\sqrt{x^2}$.

Assim, considerando $f(x) = \frac{g(x)}{\sqrt{h(x)}}$, chegamos a:

$$\lim_{x \to -\infty} \frac{3x+4}{\sqrt{2x^2-5}} = \lim_{x \to +\infty} \frac{x\left(3+\frac{4}{x}\right)}{\sqrt{x^2}\sqrt{2-\frac{5}{x^2}}} = \lim_{x \to +\infty} \frac{-\sqrt{x^2}\left(3+\frac{4}{x}\right)}{\sqrt{x^2}\sqrt{2-\frac{5}{x^2}}} = \lim_{x \to -\infty} -\frac{3+\frac{4}{x}}{\sqrt{2-\frac{5}{x^2}}} = \lim_{x \to -$$

Exemplo 2.7.5 Calcule, se existir, $\lim_{x \to +\infty} \frac{x^2}{x+1}$.

Solução: Observe que $f(x) = \frac{x^2}{x+1}$ é uma função racional onde o polinômio do numerador tem grau dois e o do denominador tem grau um. Então, vamos colocar x^2 em evidência nos dois termos da fração. Além disso, observe que $x \to +\infty$ e, por isso, $\frac{1}{x} \to 0^+$ e $\frac{1}{x^2} \to 0^+$. Assim, temos que

$$\lim_{x \to +\infty} \frac{x^2}{x+1} = \lim_{x \to +\infty} \frac{x^2 \cdot 1}{x^2 \left(\frac{1}{x} + \frac{1}{x^2}\right)} = \lim_{x \to +\infty} \frac{1}{\frac{1}{x} + \frac{1}{x^2}} = \frac{1}{0^+} = +\infty.$$

Exemplo 2.7.6 Calcule, se existir, $\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5}$.

Solução: Observe que $f(x) = \frac{2x - x^2}{3x + 5}$ é uma função racional onde o polinômio do numerador tem grau dois e o do denominador tem grau um. Então, vamos colocar x^2 em evidência nos dois termos da fração. Além disso, observe que $x \to +\infty$ e, por isso, $\frac{3}{x} \to 0^+$ e $\frac{5}{x^2} \to 0^+$. Assim, temos que

$$\lim_{x \to +\infty} \frac{2x - x^2}{3x + 5} = \lim_{x \to +\infty} \frac{x^2 \left(\frac{2}{x} - 1\right)}{x^2 \left(\frac{3}{x} + \frac{5}{x^2}\right)} = \lim_{x \to +\infty} \frac{\frac{2}{x} - 1}{\frac{3}{x} + \frac{5}{x^2}} = \frac{-1}{0^+} = -\infty.$$

Da mesma forma que no caso dos limites infinitos, caso o valor da variável independente cresça indefinidamente e com isso o valor da função fique cada vez mais próximo da reta y=b, teremos uma assíntota que, nesse caso, será horizontal. A definição formal é apresentada a seguir.

Definição 2.7.3 A reta y = b é denominada **Assíntota Horizontal** do gráfico da função $f: X \subset \mathbb{R} \to \mathbb{R}$ se pelo menos uma das seguintes afirmações for verdadeira:

a) $\lim_{x \to +\infty} f(x) = b$ e para algum N > 0, se x > N, então, $f(x) \neq b$.

b) $\lim_{x \to -\infty} f(x) = b$ e para algum N > 0, se x < -N, então, $f(x) \neq b$.

Vejamos alguns exemplos.

Exemplo 2.7.7 Encontre, se existirem, as assíntotas horizontais e faça um esboço do gráfico da função f definida por $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Solução: Observe que

$$f(x) = \frac{x}{\sqrt{x^2 + 1}} = \frac{x \cdot 1}{\sqrt{x^2 \left(1 + \frac{1}{x^2}\right)}} = \frac{x \cdot 1}{\sqrt{x^2} \sqrt{1 + \frac{1}{x^2}}} = \frac{x \cdot 1}{|x| \sqrt{1 + \frac{1}{x^2}}}.$$

Portanto, temos que

$$f(x) = \begin{cases} \frac{1}{\sqrt{1 + \frac{1}{x^2}}}, & se \quad x \ge 0 \\ -\frac{1}{\sqrt{1 + \frac{1}{x^2}}}, & se \quad x < 0 \end{cases}$$

Consequentemente, $\lim_{x\to +\infty} f(x) = 1$ e que $\lim_{x\to -\infty} f(x) = -1$. Portanto, as retas y=1 e y=-1 são as assíntotas horizontais do gráfico da função f.

Observe que a função não possui assíntotas verticais, visto que o denominador é sempre não nulo. Um esboço do gráfico de f é apresentado pela Figura 2.7.

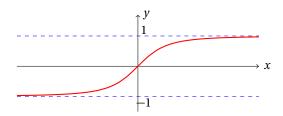


Figura 2.7: Esboço do gráfico da função $f(x) = \frac{x}{\sqrt{x^2 + 1}}$.

Exemplo 2.7.8 Encontre as assíntotas (verticais e horizontais) e faça um esboço do gráfico da equação $xy^2-2y^2-4x=0$.

Solução: Temos que $xy^2-2y^2-4x=0 \Rightarrow y^2(x-2)=4x$. Assim, considerando $x \neq 2$ temos que $y^2(x-2)=4x \Rightarrow y^2=\frac{4x}{x-2}$. Por outro lado, garantindo que $\frac{4x}{x-2} \geq 0$, temos que $y=\pm\sqrt{\frac{4x}{x-2}}$.

Dessa forma, considerando $f(x)=\sqrt{\frac{4x}{x-2}}$ e $g(x)=-\sqrt{\frac{4x}{x-2}}$ e as condições já descritas, temos que o domínio das funções f e g ficam dadas por $D_f=D_g=]-\infty,0]\cup]2,+\infty[$, como visto na Figura 2.8.

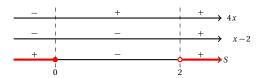


Figura 2.8: Estudo do domínio das funções $y = \pm \sqrt{\frac{4x}{x-2}}$.

Dessa forma, temos que a candidata a assintota vertical é a reta x = 2, visto que é o ponto que torna o denominador das funções $f \in g$ nulo. Assim, como

a)
$$\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} 2\sqrt{\frac{x}{x-2}} = +\infty$$
, b) $\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} -2\sqrt{\frac{x}{x-2}} = -\infty$.

segue que a reta x=2 é a assíntota vertical do gráfico da equação. Por outro lado, calculado os limites no infinitos das funções f e g temos que

a)
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} 2\sqrt{\frac{1}{1 - \frac{2}{x}}} = 2$$
, c) $\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} -2\sqrt{\frac{1}{1 - \frac{2}{x}}} = -2$,

b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} 2\sqrt{\frac{1}{1 - \frac{2}{x}}} = 2$$
, d) $\lim_{x \to -\infty} g(x) = \lim_{x \to -\infty} -2\sqrt{\frac{1}{1 - \frac{2}{x}}} = -2$,

Portanto, as retas y = 2 e y = -2 são as assíntotas horizontais do gráfico da equação. Um esboço do gráfico da equação fica dado pela Figura 2.9.

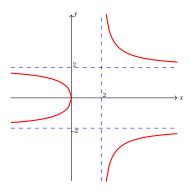


Figura 2.9: Esboço do gráfico da função $xy^2-2y^2-4x=0$.

Agora, pratique os conceitos aprendido. Bons estudos.

2.8 Exercícios

Exercício 2.8.1 *Calcule, se existir, o limite indicado.*

a)
$$\lim_{t \to +\infty} \frac{2t+1}{5t-2}$$
;

d)
$$\lim_{x \to +\infty} \frac{x+4}{3x^2-5}$$

a)
$$\lim_{t \to +\infty} \frac{2t+1}{5t-2}$$
; d) $\lim_{x \to +\infty} \frac{x+4}{3x^2-5}$; g) $\lim_{x \to +\infty} \frac{2x^3-4}{5x+3}$; j) $\lim_{x \to -\infty} \frac{\sqrt{x^2+4}}{x+4}$;

$$j) \lim_{x \to -\infty} \frac{\sqrt{x^2 + 4}}{x + 4};$$

b)
$$\lim_{t \to -\infty} \frac{2x+7}{4-5x}$$

e)
$$\lim_{x \to +\infty} \frac{2x^2 - 3x}{x + 1}$$

$$h) \lim_{x \to -\infty} \left(3x + \frac{1}{x^2} \right);$$

b)
$$\lim_{t \to -\infty} \frac{2x+7}{4-5x}$$
; e) $\lim_{x \to +\infty} \frac{2x^2-3x}{x+1}$; h) $\lim_{x \to -\infty} \left(3x+\frac{1}{x^2}\right)$; k) $\lim_{x \to -\infty} \frac{\sqrt{x^2-2x+3}}{x+5}$.

c)
$$\lim_{x \to +\infty} \frac{x^2 - 2x + 1}{3x^2 + 8x + 5}$$
; f) $\lim_{x \to -\infty} \frac{4x^3 + 2x^2 - 5}{8x^3 + x + 2}$; i) $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 4}}{x + 4}$;

Exercício 2.8.2 Encontre, se existir, as assíntotas horizontais e verticais do gráfico da função f e faça um esboço do mesmo.

a)
$$f(x) = \frac{1}{x-4}$$
;

e)
$$f(x) = \frac{1}{x-1}$$
;

i)
$$f(x) = \frac{2x+1}{x-3}$$
;

a)
$$f(x) = \frac{1}{x-4}$$
; e) $f(x) = \frac{1}{x-1}$; i) $f(x) = \frac{2x+1}{x-3}$; m) $f(x) = \frac{2}{\sqrt{x^2-4}}$;

b)
$$f(x) = \frac{2x+1}{x-3}$$

$$f(x) = 1 + \frac{1}{r^2}$$

$$j) \quad f(x) = \frac{4 - 3x}{x + 1}$$

c)
$$f(x) = \frac{4-3x}{x+1}$$
;

c)
$$f(x) = \frac{4-3x}{x+1}$$
; g) $f(x) = \frac{1}{x^2-5x+4}$; k) $f(x) = 1 - \frac{1}{x}$; o) $f(x) = \frac{5x^2+8}{4x^2-9}$;

$$o) \ f(x) = \frac{5x^2 + 8}{4x^2 - 9},$$

d)
$$f(x) = 1 - \frac{1}{x}$$
;

h)
$$f(x) = \frac{2}{\sqrt{x^2 - 4}}$$

l)
$$f(x) = 1 + \frac{1}{x^2}$$

q)
$$f(x) = \frac{1}{\sqrt{(x-3)(x-5)^2}}$$

q)
$$f(x) = \frac{1}{\sqrt{(x-3)(x-5)^2}};$$
 r) $f(x) = \frac{x^2 + 5x - 36}{\sqrt{x^3 - 5x^2 + 3x + 9}};$ s) $f(x) = \frac{x^2 - 11x + 30}{\sqrt{x^3 - 4x^2 - 3x + 18}}$

s)
$$f(x) = \frac{x^2 - 11x + 30}{\sqrt{x^3 - 4x^2 - 3x + 18}}$$

Exercício 2.8.3 Encontre, se existir, as assíntotas horizontais e verticais do gráfico da equação a seguir faça um esboço do mesmo.

a)
$$yx + 2y - 6x = 0$$
;

g)
$$v^2x + 8v^2 - 4x = 0$$
:

b)
$$3xy-2x-4y-3=0$$
;

h)
$$v^2x^2 - v^2 + 2x - 4 = 0$$
;

c)
$$x^2y^2 - x^2 + 4y^2 = 0$$
;

i)
$$9v^2x^2 - v^2 + 6x = 0$$
:

d)
$$(y^2-1)(x-3)=6$$
;

i)
$$4v^2x^2 - 16v^2 - 4x = 0$$
:

e)
$$x^2y - 2x^2 - y - 2 = 0$$
;
f) $y^2x^2 - 2y^2 - 4x = 0$;

k)
$$x^2y + 4xy - x^2 + x + 4y - 6 = 0$$
.