Valor Absoluto 1.5

O conceito de Módulo, ou Valor Absoluto, é utilizado em algumas das definições mais importantes da matemática como, por exemplo, a definição de Limite de Funções. O uso do módulo nessas definições, geralmente, nos leva a trabalhar com desigualdades. A seguir apresentamos a definição do módulo de um número real.

Definição 1.5.1 O *Módulo* (ou o *Valor Absoluto*) de x, denotado por |x|, é definido por:

$$|x| = \left\{ \begin{array}{ccc} x, & se & x \ge 0 \\ -x, & se & x < 0 \end{array} \right.$$

Da Definição 1.5.1, temos que o valor absoluto de um número real é sempre um número maior do que ou igual a zero. Geometricamente, o módulo de um número pode ser interpretado como sendo a medida da distância do número ao zero e, para um caso geral, |a-b| pode ser interpretado como sendo a distância entre os números a a b, sem necessidade de observar qual dos números está à direita, ou seja, qual deles é o maior. Vamos agora apresentar algumas propriedades.

Teorema 1.5.1 O conceito de módulo de um número apresenta as seguintes propriedades: Para todo número $a, b \in \mathbb{R}$ e $c \in \mathbb{R}^*_{\perp}$ temos que:

a)
$$|x| < c \Leftrightarrow -c < x < c$$
;

d)
$$|x| \ge c \Leftrightarrow x \le -c \text{ ou } x \ge c$$
;

b)
$$|x| \le c \Leftrightarrow -c \le x \le c$$
;

e)
$$|ab| = |a| \cdot |b|$$
;

c)
$$|x| > c \Leftrightarrow x < -c \text{ ou } x > c$$
;

f)
$$\left| \frac{a}{b} \right| = \frac{|a|}{|b|}, b \neq 0;$$

g) (**Designaldade Triangular**) $|a+b| \le |a| + |b|$.

h)
$$|a-b| \le |a| + |b|$$
;

i)
$$|a| - |b| \le |a - b|$$
;

Demonstração: Não serão feitas nessas notas.

Vejamos alguns exemplos.

Exemplo 1.5.1 Resolva cada uma das equações modulares a seguir:

a)
$$|3x+2|=5$$
;

b)
$$|2x-1| = |4x+3|$$
; c) $|5x+4| = -3$.

c)
$$|5x+4|=-3$$
.

Solução:

a) Temos que

$$|3x+2| = 5 \Rightarrow \begin{cases} 3x+2 = 5 \\ 3x+2 = -5 \end{cases} \Rightarrow \begin{cases} 3x = 5-2 \\ 3x = -5-2 \end{cases} \Rightarrow \begin{cases} 3x = 3 \\ 3x = -7 \end{cases} \Rightarrow \begin{cases} x = 1 \\ x = -\frac{7}{3} \end{cases}.$$

Portanto, o conjunto solução da equação é $S = \left\{ -\frac{7}{3}, 1 \right\}$.

b) Temos duas situações: ou as duas expressões tem o mesmo sinal ou elas tem sinais opostos. Assim,

$$|2x-1| = |4x+3| \Rightarrow \begin{cases} 2x-1 &= 4x+3 \\ 2x-1 &= -(4x+3) \end{cases} \Rightarrow \begin{cases} -1-3 &= 4x-2x \\ 2x+4x &= -3+1 \end{cases} \Rightarrow \begin{cases} 2x &= -4 \\ 6x &= -2 \end{cases} \Rightarrow \begin{cases} x &= -2 \\ x &= -\frac{1}{3} \end{cases}.$$

Portanto, o conjunto solução da equação é dado por $S = \left\{-2, -\frac{1}{3}\right\}$.

c) Observe que o módulo é igual a um número negativo, o que é um absurdo, visto que o módulo de um número é sempre maior do que ou igual a zero. Portanto, o conjunto solução da equação é o conjunto vazio, ou seja, $S = \emptyset$.

Exemplo 1.5.2 *Encontre o conjunto solução da inequação* |x-5| < 4.

Solução: Usando as propriedade de valor absoluto temos que:

$$|x-5| < 4 \Rightarrow -4 < x-5 < 4 \Rightarrow 5-4 < x < 5+4 \Rightarrow 1 < x < 9.$$

Portanto, o conjunto solução da inequação é S =]1, 9[.

Exemplo 1.5.3 *Encontre o conjunto solução da inequação* |3x+2| > 5.

Solução: Usando as propriedades de valor absoluto, temos que:

$$|3x+2| > 5 \begin{cases} 3x+2 > 5 \\ \text{ou} \\ 3x+2 < -5 \end{cases} \Rightarrow \begin{cases} 3x+2 > 5 \\ \text{ou} \\ 3x+2 < -5 \end{cases} \Rightarrow \begin{cases} 3x > 3 \\ \text{ou} \\ 3x < -7 \end{cases} \Rightarrow \begin{cases} x > 1 \\ \text{ou} \\ x < -\frac{7}{3} \end{cases}.$$

Portanto, o conjunto solução da inequação é dado por $\left]-\infty, -\frac{7}{3}\right[\cup]1, +\infty[$.

Existe uma relação direta entre o módulo de um número real e a raiz quadrada do quadrado desse número, como pode ser observado a seguir.

Observação 1.5.1 Temos que |x| = x ou |x| = -x. Portanto, $|x|^2 = x^2$ que equivale a $|x| = \sqrt{x^2}$. Sendo assim, a definição de valor absoluto pode ser reescrita da forma:

"Para todo número real x temos que $|x| = \sqrt{x^2}$."

Além disso, lembremos que o símbolo $x = \sqrt[n]{a}$, para $a \ge 0$ e n par, representa o único número real x não negativo tal que $x^n = a$ (n par) e, por isso, $\sqrt[n]{x}$ (n par) só faz sentido para números reais tais que $x \ge 0$.

Usamos essa última observação para obter condição de existência de equações envolvendo raízes de índices pares. Vejamos um exemplo.

Exemplo 1.5.4 Encontre todos os valores de x para os quais a raiz $\sqrt{x^2 + 7x + 12}$ represente um número real.

Solução: Uma raiz quadrada com radicando negativo não representa um número real. Logo, como $x^2 + 7x + 12 = (x + 4)(x + 3)$, segue que $\sqrt{x^2 + 7x + 12}$ representa um número real se, e somente se, $(x + 4)(x + 3) \ge 0$. Fazendo um estudo de sinal da inequação pela Figura 1.9, observe que:

Figura 1.9: Estudo do sinal da inequação $(x + 4)(x + 3) \ge 0$.

Portanto, a raiz representa um número real para todo $x \in]-\infty, -4] \cup [-3, +\infty[$.

Agora, exercite os conhecimentos fazendo exercícios. Bons estudos.

1.6 Exercícios

Exercício 1.6.1 Encontre todos os valores de x para que cada uma das raízes a seguir represente números reais.

a)
$$\sqrt{8x-5}$$
; e) $\sqrt{5x+1}$; i) $\sqrt{x^2-3x-10}$; m) $\sqrt{2x^2+5x-3}$;

b)
$$\sqrt{3x+6}$$
; f) $\sqrt{(x-3)(x+5)}$; j) $\sqrt{x^2+2x+2}$; n) $\sqrt[4]{x^2-5x+4}$;

c)
$$\sqrt{2-12x}$$
; g) $\sqrt{(-x-2)(x-4)}$; k) $\sqrt{x^2-4x}$; o) $\sqrt[4]{x^2+2x+1}$;

d)
$$\sqrt{2x-5}$$
; h) $\sqrt{x^2-16}$; l) $\sqrt{-x-2x^2}$; p) $\sqrt[6]{x^2+2x-1}$.

Exercício 1.6.2 Encontre o conjunto solução de cada uma das igualdades a seguir.

a)
$$|x-7|=5$$
; h) $|3x+1|=|x-3|$; o) $\left|\frac{x+2}{x-2}\right|=5$; b) $|x+3|=7$; i) $|x|^2+|x|-6=0$;

$$|4x + 3| = 1, |f| |4x + 3| = 1, |f| |4x$$

e)
$$|3x-8|=4;$$
 l) $|5x-6|=x^2;$ q) $\left|\frac{3x+8}{2x-3}\right|=4;$

Exercício 1.6.3 Encontre o conjunto solução de cada uma das desigualdades a seguir.

a)
$$|x+4| < 7$$
;

i)
$$|2x-5| > 3$$
;

$$q) \left| \frac{x+2}{2x-3} \right| < 4;$$

b)
$$|2x-5| < 3$$
;

j)
$$|x+4| \le |2x-6|$$
;

c)
$$|3x-4| \le 2$$
;

$$k) |3x| > |6-3x|;$$

$$r) \left| \frac{x+1}{2x-1} \right| \le 2;$$

d)
$$|3x+2| \ge 1$$
;

l)
$$|3+2x| < |4-x|$$
;

$$s) \left| \frac{6-5x}{3+x} \right| \le \frac{1}{2};$$

e)
$$|5-x| > 7$$
;

$$m) |x-2|-|x-4| \le 1-x;$$

$$|3+x|^{-2}$$

$$f) |3-x| < 5;$$

$$n) |x+1|-|x-2|>4;$$

t)
$$|2x-4| \ge 5x-3$$
;

g)
$$|7-4x| \le 9$$
;

$$o) |9-2x| \ge |4x|;$$

$$u) |3x-5| < 6-2x;$$

h)
$$|6-2x| \ge 7$$
;

$$p) |5-2x| \ge 7;$$

$$v) \left| \frac{x-2}{x-4} \right| > \frac{x+2}{x}.$$